Some Graph Operations Of Even Vertex Odd Mean Labeling Graphs
نویسندگان
چکیده
A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)= f u f v 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to prove some graph operations of even vertex odd mean labeling graphs
منابع مشابه
Skolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملRemainder Cordial Labeling of Graphs
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
متن کاملEven vertex odd mean labeling of graphs
In this paper we introduce a new type of labeling known as even vertex odd mean labeling. A graph G with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f : V (G) → {0, 2, 4, . . . , 2q−2, 2q} such that the induced map f∗ : E(G) → {1, 3, 5, . . . , 2q− 1} defined by f∗(uv) = f(u)+f(v) 2 is a bijection. A graph that admits an even ver...
متن کامل